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Abstract We demonstrate the potential of Kurt Bruckner’s

‘addition algorithm’, which is based on the substitution rule

for the generation of the Robinson triangle tiling, a variant

of the Penrose tiling. The artist Kurt Bruckner developed

his straightforward approach intuitively for the creation of

quasiperiodic ornaments. This versatile method can be used

for the construction of achiral, homochiral and racemic

quasiperiodic ornaments, as well as for the generation of

decorated two-level (two-color) Penrose tilings. Therefore,

the underlying tiling is always the same kind of Penrose

tiling, which is invariant under the action of specific mirror

and black/white mirror operations in contrast to unit tiles

that are decorated in specific ways. Compared to the

underlying classical substitution method the advantage of

Kurt Bruckner’s approach is its simplicity and versatility

for the creation of decorated tilings. Using a vector

graphics editor, large and arbitrarily complex quasiperiodic

ornaments can be easily generated manually.

Keywords Quasiperiodic � Fivefold symmetry � Penrose

tiling � Robinson triangles � Chiral � Ornaments

Introduction

This topical issue is dedicated to Alan L. Mackay on the

occasion of his 90th birthday. How is our contribution

linked to his work? Alan L. Mackay was showing interest

in fivefold symmetry already long before Dan Shechtman’s

seminal discovery of icosahedral quasicrystals in April

1982. His paper on the icosahedral packing of equal

spheres appeared already 20 years earlier [1]. Shortly after

the first publication of a two-dimensional quasiperiodic

tiling with local fivefold symmetry by Roger Penrose [2],

later called Penrose tiling (PT), Alan L. Mackay discussed

at the 10th Conference of the Yugoslav Centre of Crys-

tallography recursive rules for building pentagons and tri-

angles based on two isosceles triangles (Robinson

triangles) [3]. A few years after the popularization of the

PT by Martin Gardner’s article in the journal ‘Scientific

American’ [4], Alan L. Mackay was the first to show by

optical diffraction how a diffraction pattern of a PT should

look like [5]. Had Dan Shechtman known about his work,

his discovery of quasicrystalline Al–Mn would not have

taken more than 2 years to get published [6]. For an

introduction into the topics of tilings and quasicrystals in

general see, for instance, the textbook ‘Crystallography of

quasicrystals’ by Steurer and Deloudi [7] and the com-

prehensive monograph ‘Tilings and Patterns’ by Grünbaum

and Shephard [8].

The sculptor, painter and graphic artist Kurt Bruckner

(KB) was inspired by the Penrose tiling to create beautiful

ornamental patterns; some of them are shown in Fig. 1.

Moreover, he developed an ‘addition algorithm’, a

remarkably simple way to generate his decorated tilings.

Born in 1953 in Styria, Austria, KB attended the Art

Academy Brera in Milan after completing his training as a

sculptor. Since 1982, he has been working as sculptor in
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Schaffhausen, Switzerland. His specialty is concrete cast-

ing. In 2001, in the course of an artistic reorientation he

became interested in ornamentation, initially mainly based

on Arabic ornaments. In 2004, he came by chance across a

picture of the PT in the popular journal ‘Scientific Amer-

ican.’ KB was thrilled with the quasiperiodic patterns in

which he saw a great potential for the development of his

own artistic ornaments. Without deeper mathematical

knowledge, just by visual inspection, he developed his own

approach for the manual generation of the PT with arbitrary

decorations. Examining the resulting complex interlace

patterns, he was fascinated by the fact that rather than the

translational symmetry of the familiar traditional orna-

ments here the fivefold rotational symmetry conveys the

dynamism of the narrative of the image. KB has been

experimenting with many different ways of decorating the

underlying quasiperiodic patterns, because he is primarily

interested in the ornamental as an artistic principle of

visual form and image generation. With his ornamental

patterns he wants to challenge viewers in their perception
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(b)

S
B
H

B

H

S

Fig. 1 Examples of Kurt

Bruckner’s ornamental

creations (a 100617 1,

b 150918, c 150925, d 141124,

e 121213, f 111228. The six

digits give the year/month/day

in which they were created.)

with the unit tiles and some

structure motifs marked by the

authors. Subfigures a–d are

achiral decorations of the

regular PT, while the ones in

(e) and (f) are two-level PTs.

The one in

subfigure (e) corresponds to a

racemic tiling of chiral unit

tiles, and the one in (f) to a two-

level PT. Along a ‘worm’ all fat

rhombs have the same

handedness (marked blue or

red) or color distribution

(marked yellow or white) until it

is changed by a single skinny

rhomb. Two subsequent skinny

rhombs leave it unchanged. �
Prolitteris 2016, Zurich (Color

figure online)
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by irritation. His esthetic approach to art—and on side

roads to mathematics—is of playful nature, searching,

discovering, combining, experimenting. For more infor-

mation on his work see, for instance, his website http://

kurtbruckner.ch/.

Kurt Bruckner’s ‘addition algorithm’

KB’s ‘addition algorithm’ can be related to the classic

substitution rule for the generation of the PT in the version

of the Robinson triangle tiling. In Fig. 2, it is shown how

the two prototiles (Fig. 2a), the isosceles triangles A0 and

B0, have to be combined in their original and reflected

form, respectively. In the first step, the two unit Penrose

rhomb tiles are formed (Fig. 2b). After each substitution

operation, the resulting patches of tiles with the shape of

the original unit tiles are inflated by a factor s (Fig. 3e).

The number s ¼ 2 cos p=5 ¼ 1 þ
ffiffiffi

5
p

� �

=2 ¼ 1:618 � � � is an

algebraic irrational number, i.e., the solution of the equa-

tion s2 � s� 1 ¼ 0, called the golden mean or golden

ratio. The Ammann line segments on the unit tiles are

going to form a Fibonacci pentagrid on the growing tiling

proving its quasiperiodicity in this way.

In the following, we will present KB’s ‘addition algo-

rithm’ step by step (Fig. 3):

• We start with the two kinds of isosceles Robinson

triangles A (blue) and B (yellow), both with acute

angles p/5 and an area ratio A/B of s, which may be

arbitrarily decorated (Fig. 3a). In our case, we decorate

them with Ammann line segments in order to confirm

the quasiperiodicity of the resulting tiling. Only if the

segments form five sets of straight lines with particular

properties, the tiling is strictly quasiperiodic.

• In the first step, we combine the Robinson triangles to

the skinny (alias prolate, thin; yellow) and the fat (alias

oblate, thick; blue) Penrose rhomb unit tiles, respec-

tively (zeroth generation, n = 0). This can be done by

either a reflection operation m (Figs. 3b, 5b), or a color

(black/white) reflection operation m0 (Fig. 4b), i.e., an

operation that not only reflects a motif but also changes

its color in a defined way (from black to white, red to

green, blue to yellow, etc.).

• Then, we attach on top of the fat rhomb the two

reflected and rotated halves of the skinny and the fat

rhombs of the zeroth generation (Fig. 3c–e). The half

original fat rhomb A plus the attached half skinny

rhomb B together give the half skinny rhomb (Robin-

son triangle B1) of the first generation (n = 1). With the

further addition of a half original fat rhomb A, one gets

the half fat rhomb (Robinson triangle A1) of the first

generation (n = 1).

• Subsequently, we attach to the fat rhomb of the first

generation its two reflected and rotated halves (Robin-

son triangles Am
1 ), but now at the bottom. The gaps are

filled by the halves of skinny rhombs (Robinson

triangle Bm
1 ) of the first generation, which are extracted

from reflected subregions of the halves of the fat

rhombs (Robinson triangles Am
1 ) (Fig. 3h).

• We repeat the previous steps again and again each time

with patches on a s larger scale. Note that the

attachment of the reflected fat rhomb halves takes

place at the top and at the bottom of the fat rhombs

alternatingly.

KB’s algorithm always generates the same PT under-

lying the various ornamental patterns; the only difference

in symmetry results from the symmetry of the decoration of

the unit tiles. If the decorated rhomb unit tiles have the

holohedral symmetry 2mm, the resulting tiling has the same

symmetry as the non-decorated tiling itself. In the case of a

color-chiral decoration of the rhombs, we can get a

homochiral PT (Fig. 4j–r) or a racemic PT (Figs. 1e, 4a–i).

Replacing the regular mirror lines m by color-(black/

white)-mirror lines m0, we obtain a two-level (two-color)

PT (Figs. 1f, 5). In Fig. 1e, f, a few so-called ‘worms’ are

marked. Such a ‘worm’ consists of a sequence of rhombs,

each with two edges perpendicular to its propagation

m m

(a) (b) (c)

A0

B0

A0
mA0

B0
mB0

A1
mA1

B1
mB1

A0
m

A0 A0
m

A0

B0
m B0

B0
mB0
A0A0

m

π/5

3π/5

Fig. 2 Generation of the Robinson triangle tiling based on the

substitution rule. The isosceles triangles (a) are marked by Ammann

lines in order to show the matching rules. In the PT, the decorated

Robinson triangles occur each in both enantiomorphs. Yellow/orange

and light blue/dark blue triangle pairs are each related by mirror

symmetry. The different colors of the reflected unit tiles just indicate

the result of a reflection operation m and should not be misinterpreted

as resulting from a color reflection m0. The skinny and fat Penrose

unit rhomb tiles (b) consist each of the respective two mirror

symmetric Robinson triangles. The first inflation of the unit rhombs is

shown in (c). One sees that the inflated fat rhomb tile also contains the

inflated skinny rhomb tile. The term ‘inflation’ refers to the increased

number of unit tiles as well as to the blown-up dimension of the

resulting rhomb tiles. (The drawing is based on the respective

figure in the Tilings Encyclopedia, http://tilings.math.uni-bielefeld.de/

substitution_rules/robinson_triangle.) (Color figure online)
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direction. Each single rhomb of the PT is in the intersection

of two each other crossing ‘worms.’ Several ‘boat’ (B),

‘hexagon’ (H) and ‘star’ (S) supertiles are marked, which

consist of unit tiles of the same handedness/color

distribution.

Each inflation step leads to a PT with the shape of the

fat Penrose unit rhomb and with the total area increased

by a factor of s2. The number of fat and skinny rhombs

for the nth inflation step corresponds to the Fibonacci

numbers F2n?1 and F2n, respectively. The Fibonacci

numbers Fn = 0, 1, 1, 2, 3, 5, 8, 13, …. are defined by

the recursive equation Fn?1 = Fn ? Fn-1, with F0 = 0

and F1 = 1.

Symmetry of the decorated tilings

It has to be kept in mind that the KB algorithm, applied to

empty Robinson triangles, gives always a patch of the PT

with the shape of the fat Penrose rhomb and the point group

symmetry m. Depending on the symmetry of the decoration

of the unit rhombs and the kind of reflection operation

applied (m or m0), the symmetry of the resulting patch of

the PT can be m or m0. The application of fivefold rotation

to the final inflated pattern of the PT leads to a five-star

with symmetries 5m or 5m0, respectively.

If the starting unit rhombs are decorated in a mirror

symmetric way around the long (short) body diagonal of

m m(a) (c) (d) (e)

(f)

(g) (h) (i) (j)

(k) (l) (m)

m m

m m

m m

m m

m

(b)

m
n=1

n=2

n=3

mB

A

A+B=
B1

A1
m

B1
m

A2
m

B2
m

B1
m

n=0

Fig. 3 Kurt Bruckners ‘addition algorithm’ for the creation of the

rhomb Penrose tiling (see main text). Instead of substitutions, he

applies reflections and rotations. For proving the quasiperiodicity of

the resulting tiling, the unit tiles are decorated with Ammann line

segments. These connect to sets of straight lines when a PT is formed
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the fat (skinny) rhomb, then the resulting symmetry after

each inflation step, which is obtained by applying just

mirror operations m, remains m.

If the starting unit rhombs are decorated in a chiral way,

e.g., with black/white (b/w) mirror symmetry m0 around the

long and short body diagonals of the unit rhombs, then the

resulting symmetry after each inflation step, which is

obtained by applying just mirror operations m, remains m0.
However, the inflated patterns are racemic, i.e., they con-

tain both left- and right-handed copies of the original unit

rhombs (Figs. 1e, 4a–i). Their frequencies for the nth

inflation step corresponds to the Fibonacci numbers F2n

and F2n-1, respectively, for the fat rhombs and F2n-1 and

F2n-2, respectively, for the skinny rhombs. The number of

copies of the original handedness is F2n in case of the fat

rhombs and F2n-2 in case of the skinny rhombs.

If we use b/w mirror lines m0 for the inflation process

starting from b/w chiral fat and skinny rhombs, we get

inflated patterns, which will be homochiral due to

m0�m0 = 1; the symmetry of the patch will be m0 and fre-

quencies of the fat and skinny rhombs F2n?1 and F2n,

respectively (Fig. 4j–r).

In case of mirror symmetric unit tiles and b/w mirrors m0

operating in the inflation process, the two-color (two-level)

PT [9] with symmetry m results (Figs. 1f, 5). Patches of

unit tiles of the same color form the H, B, S super-

tiles. Their frequencies are in a ratio nH : nB : nS =

s
ffiffiffi

5
p

:
ffiffiffi

5
p

: 1. Tilings based on these three supertiles are

called HBS tilings. They are dual to the Penrose pentagon

tiling.

Caveat: The above symmetry considerations refer only

to the symmetry of the finite patches of the PT generated by

m m(a) (b) (c) (d) (e)

(f) (g) (h) (i)

m m

m m

m’ m’

m m’ m’m

m’

m’ m’(j) (k) (l) (m) (n)

(o) (p) (q) (r)

m’ m’

m’ m’

m’ m’

m’ m’ m’m’

m’

n=1

n=2

n=1

n=2

Fig. 4 If we apply black/white

reflection operations m0 for

creating chiral Penrose unit tiles

from Robinson triangles, which

already have b/w mirror

symmetry, and just simple

reflections m later on, the finally

resulting inflated fat Penrose

unit rhomb will show symmetry

m0 as well (a)–(i). We get a

racemic tiling where both

polymorphs will be equally

distributed finally. If we apply

m0 operations only in the

inflation process, then the finally

resulting inflated fat Penrose

unit rhomb will show symmetry

m0 and will be homochiral

(j)–(r). All unit tiles will have

the same handedness as the

original ones
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the KB algorithm. Although there is no point of local

tenfold symmetry in a regular PT (only in the exceptionally

singular PT; see [10]), the point group symmetry of an

infinite PT is decagonal, 10mm, and that of the two-color

PT, for instance, is 10’m0m (see, e.g., [11]). The decagonal

symmetry is reflected in the ‘bond-orientational order,’ i.e.,

the orientational distribution of the tile edges in the PT. It is

also reflected in the symmetry of its Fourier image, i.e., the

distribution of structure factors in the Fourier space (see,

e.g., [12], Figs. 4.6.3.24–27).

References

1. Mackay AL (1962) A dense non-crystallographic packing of

equal spheres. Acta Crystallogr 15:916–918

2. Penrose R (1974) The role of aesthetics in pure and applied

mathematical research. Bull Inst Math Appl 10:266–271

3. Mackay AL (1975) Generalised crystallography. Izvj Jugosl

Centr Krist (Zagreb) 10:15–36

4. Gardner M (1977) Extraordinary nonperiodic tiling that enriches

the theory of tiles. Sci Am 236(1):110–121

5. Mackay AL (1982) Crystallography and the Penrose pattern. Phys

A 114:609–613

6. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase

with long-range orientational order and no translational symme-

try. Phys Rev Lett 53:1951–1953

7. Steurer W, Deloudi S (2009) Crystallography of quasicrystals.

Concepts, methods and structures, vol 126., Springer series in

materials science. Springer, Heidelberg
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Fig. 5 If we apply a black/white reflection operation m0 for creating

the Penrose unit tiles from Robinson triangles with mirror symmetry

and also black/white reflection operations m0 later on, the finally

resulting inflated fat Penrose unit rhomb will show symmetry m as

well. The tiling itself will be a black/white or two-level Penrose tiling

(see [8], and references therein)
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